ONE PULSED HYDRODYNAMIC MODEL OF A CRATERING
EXPLOSION
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It is well -known that in an explosion, in a number of cases, the compressibility of the medium, its sta-
bility and plastic properties, and frictional forces can be neglected in comparison with the inertial forces.
Then the model of an ideally incompressible liquid is obtained, for which the equations of motion in the pulsed
formulation of the problem of hydrodynamics have the form

v = — (1/p)yp; (1)
_divv =0, @)

where v is the velocity vector; p is the density of the medium; and p is the pulse pressure. It follows from
relation (1) that [Vp| and the magnitude of the velocity v=|w| are connected by a linear relation. This model is
used for solving problems of the determination of the dimensions of ground throwout craters or zones of crush-
ing in rocks (see, for example, [1-7]). In this case, the given model is of somewhat different form [5]. Accord-
ing to the liquid model [1] (We shall call it model 1), the medium is considered as an ideal incompressible liquid
in the whole region occupied by it, so that in all this region the linear relation between v and Vp is valid. It
follows from the latter that with any suitably small values of [Vp|> 0, the whole medium acquires an instanta-
neous velocity field. But since the region of action of an explosion is limited, the concept of critical velocity

v# is introduced, during the attainment of which fracture of the given medium occurs [6]. The dimensions of
the throwout crater are determined from the condition that the critical value of the velocity is reached at the
edge of this excavation.

Tn the solid —liquid model [2, 4] (we shall call it model 2), the medium is described by Egs. (1) and (2)
only in the region where v> vy, Outside of this region, the medium is assumed to be an absolutely solid body.
According to this model, the shape of the throwout crater is found to be a line of flow, along which v=v,. In
model 2, the linear dependence between v and Vp occurs only when v > vy (when v < vx, it is not possible to say
anything about the relation between |Vp| and v), and the instantaneous velocity field originating during the ex-
plosion contains only the velocities v=vs, In Fig. 1, model 1 corresponds to the straight line 0zb and model 2
corresponds to the straight line gb,

We note that in the description of model 2 we can speak more conveniently, not of the attainment of the
value vx, but about a certain modulus (absolute value) of the gradient of the pulsed pressure A, during the at-
tainment of which motion begins with a veloecity vi (see Fig. 1). We shall call the quantity A the initial gradient,
by analogy with the problems of nonlinear filtration theory (see, for example, [8-11]). In terms of this theory,
model 2 corresponds to the so-called piecewise-explosive law of filtration [12].
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TABLE 1
Alter- | . Model 1 Model 2 Model 3
native ﬁ' v s . ’ ’ ’
No. A . % *c ~¥p *a ~¥p
1 10 0,0427 0,1703 0,2217 0,1018 0,2630 0,1310
11 14 0,0332 0,1491 0,1952 0,0914 0,2292 0,1164
II1 18 0,0276 0,1354 0,1778 0,0842 0,2057 0,1055

In addition to the models considered, we shall suggest a model 3 (the question of the suitability of applica-
tion of one or the other model for calculating the effect of an explosion can be resolved only on the basis of ex-
perimental data). The instantaneous velocity field, just as in model 2, originates with the attainment |Vp| of the
initial gradient A ; but in contrast from model 2, this field contains the velocities v= 0 and not only v=v,. The
law of motion corresponding to this model is shown in Fig. 1 by the straight line cd (it is supposed that the
uniform incompressible medium, characterized by the initial gradient A, is one and the same, i.e., tan 8 =1/p,
p =const). The equation of motion is represented conveniently in the form

ve = — (A + oo)v/v), A< lypl < oo, divv =0, &)

The boundary of the excavation is found from the condition of equating to zero the magnitudes of the velocity on
this line. We note that if during the explosion two zones are distinguished — a zone of fracture of the medium
and a throwout zone — as is done, for example, in [13, 14], then probably model 3 corresponds more to the
problem of determining the boundary of the crater of fracturing of the medium.

We shall consider the problem concerning the explosion of a plane cord charge on the surface of homoge-
neous ground. This problem is solved by model 2 in [4]. We shall simplify the solution of this problem using
model 3. I order that the dimensions of the craters obtained by the different models can be compared, we
shall assume that the density of the medium p, the pulsed pressure at the charge p,, the initial gradient of the
pulsed pressure A, and the width 2] of the plane cord charge are identical.

Suppose that during the explosion of a plane cord charge with cross section BAB' and width 2/ an ex-
cavation CDC' has been formed (Fig. 2). In view of symmetry, we shall consider only the right-hand half of the
region of motion, which we shall denote by G, its boundary being denoted by I', (z=x+iy). Knowing the quan-
tities py, p, A, and I , and based on model 3, we shall construct the section CD of the boundary T,.

We introduce the magnitude of the velocity v, by the relation vy=A/p. If we take into account that tan 8 =
1/p, we obtain vy=v,, i.e., the quantity v, will be the critical velocity v for model 2 (see Fig. 1). The system
of equations (2) and (3) can be written in the form

09/0x = (1 + vy/v)v,, 89/oy = (1 - vylv)vy, dv,/ox + dv,/dy = 0, (4)
where ¢ =—p/p and vy, vy are the projections of the velocity on the coordinate axes.

The corresponding boundary-value problem thus becomes as follows: to construct the section CD of the
boundary r, of the region G, and to determine in this region the functions ¢ (x, y), vg(x, y) and vy(x, ¥)
satisfying the nonlinear system of equations (4), according to the boundary conditions

@ =— @, on. AB, ¢ =0 on BC,

5
vy =0 on AD, v, = v, = Oion CD, ®)

where ¢ 4 =py/p.
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We introduce the stream function § by the relations
M/ox =— v sin 0, 9P/dy = v cos B,
where 8 is the angle of inclination of the velocity vector to the axis x. Then system (4), following [15, 16], can
be transformed to the form
0(]) 1 61],7 6q> . 1 alp ’ (6)

" w(s) 85’ 8s %(s) 99°

where

s=21n (]/1 + DLO - V%)’ % = (1 + —?)~3/z, "

whereby we choose s =0 when v=0, We note that on the line s =0, Eqs. (6) are degenerate. Conversion to the
physical region is effected by the formula

dz = dz. + idy = (et®/v)(vdo/(vy + V) + id). 8)

We introduce the complex function w(x) =¢ (0, s) +iy (8, s), where ¥ =6 +is. In the y plane of the region
Gy, according to the principle of the argument (see, for example, [10]), there corresponds a hali-zone Gy (Fig.
3). Taking account of Eq. (5), for the construction in GX of the bounded and continuous function w(x), we have
the following boundary conditions:

¢=—q@,on AB, 9 =0 on BC, y =00n ADC. (9)
Later, we shall solve the problem in semiinverse formulation: the velocity v at the point A will be
specified, and the half-width of the charge I and the corresponding excavation will be found.

Knowing v A» we find s, =s, by the first of formulas (7). We map conformally the region Gx on the half-
plane Im ¢ > 0 by the function

Q == sin %L (10)

As a result of this, the point A(xA=—1r/2+iso) transfers to a point on the £ axiswithabscissa ¢ , =—cosh s, (we
denote cosh so=1/k). We map the half-plane Im £ > 0 conformally on the rectangle G, (w=p +iy) with sides
AA'=DC =2K () and AD=A'C =K (k') by the elliptical integral of the first species:

« = F(arcsin g, k), : (11)

where K is a total elliptical integral of the first species; k'=V1 —Kk? (Fig. 4). Then in order to find the function
w(w) in the region G, we arrive at the solution of the equation

0Q/du = (1/n)ap/dv, dg/ov = — (1/%) dp/oy 12)
with the boundary conditions (9), where, taking into account Egs. (10) and (11),
;Z(}LV) = “{S[E(l"v V)’ 7|(p'7 V) ]}'

Solving system (12) relative to the function ¢ (1, »), we obtain for its determination the equation

O (zoe)y 2 (e
a‘( E)JFaT(" 0\,)_0 (13)

and the boundary conditions

. . (149)
¢ =— @ on AB, ¢ =0 on BC, d¢/dp = Qon AD;

lim (:: "1@_) =0 on CD. (15)

>0 v

The solution of the problem (13)-(15) is found by a numerical method developed, for example, in [17]. We note
that condition (15), as follows from the results of [18], can be substituted in‘the problem being considered by the
condition 8¢/ 8y =0 on CD.

Having determined the funetion ¢ (p, v) and', consequently [taking into account Egs. (10) and (11)], also the
function ¢ (8, s), by the conversion formula (8) we find the equation of the required section CD of theboundary T',:
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1 i .
z:__j' e 9%%5:0 do - id*, (— /2 <0< a/2), (16)

where
/2

ar = — = | % sin6do.
Uy 2 s=0

In order to determine the half-width of the charge I , we have

_Txoe 17
L= j; v 80 e:—n/zds’ @n
Formulas (16) and (17) give the solution of the problem.

As applicable to model 2, the proposed scheme for constructing the solution is simplified and allows an
analytical solution of the problem in the direct formulation to be found quite simply. We shall derive this solu-
tion in a form somewhat different from [4] in order to compare both models. .

We introduce
=0 +is = i 1n [(1/vy)dw/dz], 18)

where 0 =arg ¥V and S=In (v/vy). The region G, corresponding to the physical region G,, has the same form
as Gy (see Fig. 3), but 3 A =8y=In{vp /vy). From system (6), which assumes the form '

39/36 = 0p/0s, dg/ds =— 0/a0, ' a9

it follows that the function w(x) = (0, s) +iy (6, s) is analytic in the region G~ Solving in this region the
mixed boundary-value problem (9) and (19), we determine '

W(’i)z%-lna~1+251n77—2{gs‘1?y_1)(Slnx —-'—a) 20)

where o =cosh §,. Using Eqgs. (18) and (20), after evaluation of the integrals we obtain

= {Vsiny + (Vs 1= sing—1) + S5t 1n 2 Giny O Ginyra) pooiituty g (2
2V(smx —i—i)(smx + @) +2sin L—!—a-{—i

From the corresponding points A and B in the planes z and x , we find the constant B =] —=1/rv, and the
equation for determining the parameter «:

(@ — 121 1n (o + D@ — 1)] = 1 — nwl.

Knowing o and B*, and assuming on the section DC of the boundary of the region Gx~ the value % = 8(—a12 <
0<C n/2) and factoring out in Eq. (21) Rez=x(0) and Imz =y(6), we obtain a parametric equation for the required
boundary of the ground throwout crater.

Finally, we note that in the case of model 1, i.e., the ligquid model,
w = (@y/m) aresin [(z2 + BY/(z22 — )] — @/2,
whence, in order to determine the edge of the throwout crater xc, we have »
ze = (& 4 2o,l/mws)y2. (22)
Taking into account that when carrying out the numerical calculations and comparing the excavations ob-
tained by the different models it is more advantageous touse scaled quantities, we introduce them in the follow-
ing way:
7 2 = 2w/, W' = wlgy, V' = vlvy.
Then
vo =1, po =1,

and
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U = /g, 23)

Thus, when solving the problem in scaled quantities by model 3, ¢ j=1, vy=1, and vj > 0 are specified in
advance. During this solution, the boundary of the excavation and the half-width of the charge [ ' as a function
of the value of VA are determined. Tn order to convert from this solution to the solution in a dimensional
physical plane, of the values of the parameters 7 , v,, and ¢ ; usually known in advance (in the direct formula-
tion), only two should be specified, since the third will be determined by formula (23).

Table 1 gives the values of I' for three alternatives of the given data v found by Eq. (17) and the abscis-
sas XC corresponding to them and found by Eqs. (16), (21), and (22), for the three models considered, and the
ordinates yp for models 2 and 3. In Fig. 5, the boundaries of the crater are constructed and the sizes of the
charges corresponding to them are shown (the solid line corresponds to model 3; the dashed line corresponds
to model 2). The edges of the excavation, found by model 1, are denoted by dots.

It follows from the results of the caleulations, Table 1, and Fig. 5 that the exeavation produced is
greater according to model 3thanaccording to model 2 (in area, as well as in depth and width). This can be
explained physically in the following way. With one and the same initial gradient of the pulsed pressure A, ac-
cording to model 2 the explosion energy is taken into account only for v=v,> 0, while in model 3 all the energy
is taken info account, starting with v=0. The explanation as to why according to model 1 the edge of the ex-
cavation is located closer to the charge than according to model 2 is given in [5].

The author expresses thanks to T. V. Borisov for carrying out the numerical calculations.
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PLANE WAVES IN NONLINEAR VISCOUS MULTICOMPONENT
MEDIA

G. M. Lyakhov and V. N. Okhitin UDC 624.131+532.529

Wave processes in multicomponent media (liquid and water-saturated soil with bubbles of gas, suspen-
sions, etc.) have been studied in [1-20] and other investigations.

In [1] it was assumed that the space is filled with a number of continuous media, each of which corre-
sponds to a component of the medium. The investigation was concerned with interpenetrating motions of these
media (in the general case each moves with its own velocity and pressure). In the model of [2] the multi-
component medium was regarded as a homogeneous continuous medium with a compressibility equation taking
account of the compressibility and the presence of components that were in an equilibrium state. In [3] the
multicomponent medium was regarded as homogeneous, and the compressibility of the gaseous component was -
determined by Hugoniot's adiabatic curve. The reflection of a plane wave from a solid partition for various
angles of incidence was investigated in [4] on the basis of [2], using electronic computers. The problem of the
propagation of a wave produced by the explosion of the spherical charge of a blast wave, using the model of [2]
as a basis, was solved by means of electronic computers in [5]. The authors of [6] proposed a model of a
homogeneous medium analogous to that of [2] and obtained solutions of problems concerning the passage of a
wave through a layer of water with gas bubbles and the reflection of the wave from a fixed boundary. The
special characteristics of the structure of waves in water with gas bubbles and the effect of viscosity dissipa-
tion related to the motion of the bubbles with respect to the liguid were considered in [7]. I the model of [8]
the pulsation of the bubbles was assumed to conform to Lamb's equation, i.e., the lack of equilibrium between
the phases was taken into consideration. The case of strong shock waves, on the basis of [8], was considered
in [9]. B [10, 11] it was shown that in a liquid with gas bubbles, for specific relationships between the viscosity,
the load, and the bubble radius, there is formed a wave with an oscillator structure. In [12] the structure of a
wave was investigated on the basis of the model of [13], with oscillations taken into consideration. Equations
for the mechanics of a two-velocity two-temperature medium with two pressures were proposed in [14]. Tn [15],
on the basis of [14], the structure of a stationary wave was investigated with thermal conductivity taken into ac-
count. T was shown that the nature of the pulsation depends substantially on the heat exchange between the
phases. It was noted that the experiments of [11] should be analyzed with the time~dependent change of struc-
ture taken into account. In the experiments of [16] it was established that an increase in the intensity of the
wave leads to an increase in the frequency and amplitude of the oscillations on the front, while an increase in
the bubble diameter leads to a decrease of the frequency and an increase of the amplitude. Weak waves were
considered. ‘The authors of [17] obtained numerical solutions making it possible to determine the amplitude
oscillations on the wave front, the velocity of propagation of the wave, and the time required for establishing a
stationary structure. Waves -in water-saturated rocks were considered in [18]. The authors of [18] obtained an
equation describing weak longitudinal waves with inertial relaxation taken into account. The effect of the tension
surface was investigated in [19]. In [20] the model of [2] was improved by the introduction of nonlinear diagrams
for the dynamic and static compression of the multicomponent medium, making it possible to introduce bulk
viscosity. The effect of viscosity was considered in a somewhat different manner in [21].
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