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It is well .known that in an explosion, in a number  of cases ,  the compress ib i l i ty  of the medium, its s ta -  
bi l i ty and plast ic p rope r t i e s ,  and f r ic t ional  fo rces  can be neglected in compar i son  with the iner t ia l  fo rces .  
Then t he  model of an ideally incompress ib le  liquid is obtained, for  which the equations of motion in the pulsed 
formulat ion of the prob lem of hydrodynamics have the f o r m  

v = --  (1/p)vp; (1) 
div v : O, (2) 

where  v is the veloci ty  vec to r ,  p is the d ~ s i t y  of the medium;  and p is the pulse p r e s su re .  It follows f r o m  
re la t ion  (1) that ~Tp[ and the magnitude of the veloci ty  v =  [I, [ a re  connected by a l inear  relat ion.  This model is 
used for  solving problems  of the determinat ion of the dimensions of ground throwout c r a t e r s  or  zones of c rush-  
ing in rocks  (see, for  example,  [1-7]). in this case ,  the given model is of somewhat different  f o rm  [5]. Accord-  
tug to the liquid model [1] (we shall call  it model 1), the medium is cons idered  as an ideal incompress ib le  liquid 
in the whole region occupied by it, so that in all this region the l inear  re la t ion  between v and Vp is valid. It 
follows f r o m  the la t te r  that with any suitably smal l  values of ~Tp[ > 0, the whole medium acquires  an instanta-  
neous veloci ty  field. But s ince the region of action of an explosion is l imited,  the concept of c r i t i ca l  veloci ty  
v .  is introduced, during the at tainment  of which f r ac tu r e  of the given medium occurs  [6]. The dimensions of 
the throwout c r a t e r  a r e  de termined f r o m  the condition that the c r i t i ca l  value of the veloci ty  is reached  at the 
edge of this excavation. 

In the so l i d - l i qu id  model  [2, 4] (we shall  cal l  it model 2), the medium is descr ibed  by Eqs. (1) and (2) 
only in the region where  v > v . .  Outside of this region,  the medium is assumed to be an absolutely solid body. 
According to this model,  the shape of the throwout c r a t e r  is found to be a line of flow, along which v = v . .  In 
model 2, the l inear  dependence between v and Vp occurs  only when v > v .  (when v < v , ,  it is not possible to say 
anything about the re la t ion  between [Vpl and v), and the instantaneous veloci ty  f ield originating during the ex- 
plosion contains only the veloci t ies  v _ v . .  In Fig. 1, model 1 cor responds  to the s t ra ight  line 0ab and model 2 
co r responds  to the s t ra ight  line ab. 

We note that in the descr ipt ion of model 2 we can speak more  conveniently,  not of the at tainment of the 
value v . ,  but about a ce r t a in  modulus (absolute value) of the gradient of the pulsed p r e s s u r e  X, during the at-  
ta inment  of which motion begins with a veloci ty  v .  (see Fig. 1). We shall cal l  the quantity X the initial gradient ,  
by  analogy with the problems of nonlinear f i l t rat ion theory  (see, for  example,  [8-11]). In t e r m s  of this theory ,  
model  2 cor responds  to the so-ca l led  p iecewise-explos tve  law of f i l t ra t ion [12]. 
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TABLE 1 

Alter- 
naive VA 
No. 

I i0 
II i4 

III i8 

A ~ A" 

D CP 

Fig. 4 

Y 

-o,t 

-o,2 

I#II / t 0,2 ,z 

I 

Fig. 5 

0,0427 
0,0332 
0,0276 

0,1703 1 
0,i491 
0,i354 

Model 2 

0,2217 0,10i8 
0,i952 0,09i4 
0,t778 0,0842 

Model 3 

I -9; 
0,2630 I 0,i310 
0,2292 0,i164 
0,2057 0A055 

In addition to the models  cons idered ,  we shal l  suggest  a model 3 (the quew of the sui tabi l i ty  of appl ica-  
t ion of one or  the other  model  for  calculat ing the effect  of  an explosion can be r e so lved  only on the bas i s  of ex-  
pe r imen ta l  data). The instantaneous veloci ty  field,  just  as in model 2, o r ig ina tes  with the a t ta inment  IVpl of the 
initial gradient  ~ ; but in con t ra s t  f r o m  model  2, this f ie ld contains the  veloci t ies  v -  0 and not only v_>v . .  The 
law of motion co r respond ing  to this model  is shown in Fig. 1 by the s t ra igh t  line cd (it is supposed that the 
un i form incompres s ib l e  medium,  c h a r a c t e r i z e d  by the initial gradient  X, is one and the s ame ,  i .e. ,  tan fl = l / p ,  
p =const) .  The equation of motion is r e p r e s e n t e d  conveniently in the f o r m  

VP = -- (L -~ pv)(v/v), L ~ IVP[ < c~, div v = 0. (3) 

The boundary of the excavat ion is found f r o m  the condition of equating to ze ro  the magni tudes of the veloci ty  on 
this line. We note that ff during the explosion two zones a r e  dist inguished - a zone of f r a c t u r e  of the medium 
and a throwout zone - as is done, for  example ,  in [13, 14], then probably  model  3 co r r e sponds  m o r e  to the 
p rob lem of de te rmin ing  the boundary of the c r a t e r  of f r ac tu r ing  of the medium. 

We shall  cons ider  the p r o b l e m  concerning the explosion of a plane co rd  cha rge  on the su r face  of homoge-  
neous ground. This  p rob l em  is solved by model 2 in [4]. We shal l  s impl i fy  the solution of this  p r o b l e m  using 
model  3. In o rde r  that the d imensions  of the c r a t e r s  obtained by the different  models  can be compared ,  we 
shal l  a s s u m e  that the densi ty  of the med ium p ,  the pulsed p r e s s u r e  at the cha rge  P0, the initial gradient  of the 
pulsed p r e s s u r e  X, and the width 21 of the plane cord  charge  a r e  identical.  

Suppose that  during the explosion of a plane co rd  cha rge  with c r o s s  sect ion BAB' and width 21 an ex2 
cavat ion CDC' has been f o r m e d  (Fig. 2). In view of s y m m e t r y ,  we shal l  cons ider  only the r igh t -hand  half of the 
region of motion, which we shall  denote by G z, its boundary being denoted by Y z (z =x  +iy). Knowing the quan- 
t i t ies  P0, P, X, and l , and based  on model  3, we shal l  cons t ruc t  the sect ion CD of the boundary  r z. 

We introduce the magnitude of the ve loc i ty  v 0 by the re la t ion  Vo=X/p . If we take into account that tan fl = 
l / p ,  we obtain v 0 = v . ,  i .e. ,  the quantity v 0 will  be the c r i t i ca l  ve loci ty  v .  for  model  2 (see Fig. 1). The s y s t e m  
of equations (2) and (3) can be wri t ten  in the f o r m  

O~lOx = (i § v0lv)v~, O~tOy = (1 + v01v)vy, Ov~lOx + 8v~lOy = 0, (4) 

where  + =-p/p and Vx, Vy a r e  the projec t ions  of the ve loc i ty  on the coordinate  axes.  

The co r respond ing  boundary-va lue  p rob l em thus becomes  as fol lows: to cons t ruc t  the sect ion CD of the 
boundary  Y z of the region G z and to de t e rmine  in this region the functions g0(k, y), Vx(X, y) and Vy(X, y) 
sa t i s fying the nonl inear  s y s t e m  of equations (4), accord ing  to the boundary conditions 

q~ = - -  ~o on AB, (p = 0 on BC, 
vx = 0 on AD, vx = vy = 0Con CD, (5) 

,where r 0 =Po/P. 
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We introduce the s t r e a m  function ~b by the re la t ions  

8~/Ox = - -  v sin O, 8,/Oy = v cos 0, 

where  0 is the angle of inclination of the veloci ty  vec tor  to the axis x. 
be  t r a n s f o r me d  to the f o r m  

ocp t ar a~ t a~p " 
a--~ = ~-~) as' as u(s) oO' 

where  

Then sys t em (4), following [15, 16], can 

(r +V ( s = 2 1 n  t +  v--~ -~o '~r  t + T /  ' 

whereby  we c h o o s e s  =0 when v=0 .  We note  that on the line s =0, Eqs. (6) a r e  degenerate .  
physical  region is effected by the formula  

dz = dx.-~- gdy = (e~~ -~ v) -~ id~p). 

(6) 

(7) 

Conversion to the 

(8) 

We introduce the complex function w(x) = r  s) +ir (0, s), Where X = 0 +is.  In the X plane of the region 
Gz, according to the pr inc ip le  of the argument  (see, for  example,  [10]), t h e r e  cor responds  a h~lf-zone G• (Fig. 
3). Taking account of Eq. (5), for  the const ruct ion in G x of the bounded and continuous function w(x),  we have 
the following boundary conditions: 

( p = - - %  on A B ,  q~ = 0  on B C , ~ = O o n  ADC.  (9) 

La ter ,  we shall  solve the prob lem in s emi inve r se  formulat ion:  the veloci ty  v A at the point A will be 
specif ied,  and the haft-width of the charge  l and the cor responding  excavation will be found. 

Knowing VA, we find SA=S 0 by the f i r s t  of fo rmulas  (7). We map conformal ly  the region G x on the half-  
plane Im ~ > 0 by the function 

= sin •. (10) 

As a resu l t  of this ,  the point A0fA=-Tr/2+is0)  t r a n s f e r s  to a point on the ~ axis with absc issa  ~ A = - C o s h  s o (we 
denote cosh  s0= l /k ) .  We map the haf t -plane Im [ >  0 conformal ly  on the rec tangle  Gr (r =/1 +iv) with sides 
AA' =DC =2K(k) and AD=A'C =K(k ' )by  the el l ipt ical  integral  of the f i r s t  species :  

0) = F(arcsin ~, k). (II) 

where  K is a total  el l ipt ical  integral  of the f i r s t  species ;  k' =4"l-Z'~Y(Fig. 4). Then in o rde r  to find the function 
w(w) in the region Gcv, we a r r i v e  at the solution of the equation 

0~/0~ = (l/~O~)/Ov, Or = - -  ( i / ~  0~/0~ (12) 

w i t h  the boundary condi t ions (9), where ,  tak ing into account Eqs. (10) and (11), 

Solving sys t em (12) r e l a t ive  to the function ~ (p, j,), we obtain for  its determinat ion the equation 

- a ~  0 ( - 0 ~  1 a \ /(• = 0  (13) 

and the boundary conditions 

r ~ - - - - -  ~P0 on A B ,  r = 0 on BC, O~lO~t = 0 on AD; 

lim • ~ = 0  on CD. 
~'--> 0 

(14) 

(15) 

The solution of the p rob lem (13)-(15) is found by a numer ica l  method developed, for  example,  in [17]. We note 
that condition (15), as follows f r o m  the r e su l t s  of [18], can be substi tuted in.the problem being cons idered  by the 

condition 0q~/O ~ = 0 on CD. 

Having de termined  the function ~ (p ,  v)  and,  consequently [taking into account Eqs. (10) and (11)], also the 
function r (0, s), by the convers ion  fo rmula  (8) we find the equat ionof the  r equ i r edsec t ion  CDof theboundary  r z :  
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0 , y  
Z : V--o---a/2 

e~~ ~0 mo dO + iA*,  (-- :d2 < 0 < .~/2), (16) 

where  

A * -  
~/2 

~o __!/2 ~ ~=o sin OdO. 

In o rde r  to de te rmine  the half-width Of the charge  l , we have 

cr 

l =  I ~-~-- Om ds 
,, v O0 0=--~I2 " 
So 

(17) 

Formulas  (16) and (17) g ive  the solution of the problem. 

As applicable to model  2, the proposed scheme for const ruct ing the solution is simplified and allows an 
analyt ical  solution of the prob lem in the d i rec t  formulat ion to be found quite simply.  We shall  der ive  this solu- 
tion in a f o r m  somewhat di f ferent  f rom [4] in o rd e r  to compare  both models . :  

We introduce 

Z"= 0 4-, i s =  i In [(t/vo)dw/dz], (18) 

where  0 = a r g V  and ~ = l n  (v/v0). The region G~ ,  cor responding  to the physical  region G z, has the same fo rm  
as G X (see Fig. 3), but SA=~0=ln(VA/V0). F r o m  sys t em (6), which assumes  the f o r m  

0T/00 = 0r 0~/0s = - -  0r (19) 

it follows that the function w(~) =~o(0,  s )  +ir (0, s) is analytic in the region G~. Solving in this region the 
mixed boundary-value  problem (9) and (19), we de te rmine  X 

w (~)  = ~ in ~" -- i § 2 s in  ~'. -}- 2 i (s in  ~. - t )  (s in  ~" + a)  (2 0) 
.~ a §  ' 

where  a =cosh '~  0. Using Eqs. (18) and (20), af ter  evaluation of the integrals  we obtain 

i { V s i n ~ - _ ~ a ( V s ~ n ~ + t _ V s i n ~ . l ) - } - ~ - ~ - ~ l n  2V(s in '~ - i ) ( s i n~ -ba )  - ~ 2 s i n ~ + u - - i + B * .  (21) 
z = av. 2 V(sin'z -}- i) (sin'~ -[- a) ~- 2 sin ~'~-~- g -}- i 

F r o m  the corresponding points A and B in the planes z and ~, we find the constant B* =l  - l ~ v  0 and the 
equation for  determining the pa r ame te r  tr: 

[(~ - -  1 ) / 2 ]  I n  [ ( ~  ~ l ) / ( ~  - -  i ) ]  = I - -  ~Vo l. 

Knowing a and B*,  and assuming on the sect ion DC of the boundary of the region G~ the value ~ - -  0(--.~/2 
0 ~ u / 2 )  and fac tor ing  out in Eq. (21) Rez=x(0)  and Imz =y(0) ,  we obtain a pa rame t r i c  equation for  the r equ i r ed  
boundary of the ground throwout c r a t e r .  

Finally,  we note that in the case  of model 1, i .e. ,  the liquid model,  

w = (%/n) arcsin [(z ~ -{-/2)/(z~ --/2)] _ (p0/2, 

whence, in o rde r  to de te rmine  the edge of the throwout c r a t e r  x c ,  we have 

Xc = (l "~ + 2%1/~vo)1/2. (22) 

Taking into account that when ca r ry ing  out the numer ica l  calculat ions and compar ing the excavations ob- 
tained by the different  models it is more  advantageous to use scaled quantit ies,  we introduce them in the follow- 
ing way: 

z' = Zvo/%, w'  = " w / % ,  v' = v/vo. 

Then 

v~ = ~, 6 = ~, 

and 
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l' = ZVo/%. (23) 

Thus, when solving the problem in scaled quantities by model 3, ~ 0=1, v0=l,  and v~ > 0 are  specified in 
advance. During this solution, the boundary of the excavation and the half-width of the charge l ' as a function 
of the value of v~k are  determined. In order  to convert f rom this solution to the solution in a dimensional 
physical plane, of the values of the parameters  l ,  v 0, and q 0 usually lmown in advance (in the direct formula-  
tion), only two should be specified, since the third will be determined by formula (23). 

Table 1 gives the values of l' for three alternatives of the given data vk found by Eq. (17) and the abscis-  
! 

sas x C corresponding to them and found by Eqs. (16), (21), and (22), for the three models considered, and the 
ordinates Yb for models 2 and 3. In Fig. 5 ,  the boundaries of the cra ter  are  constructed and the sizes of the 
charges corresponding to them are  shown (the solid line corresponds to model 3; the dashed line corresponds 
to model 2). The edges of the excavation, found by model 1, are  denoted by dots. 

It follows f rom the results  of the calculations, Table 1, and Fig. 5 that the excavation produced is 
greater  according to model 3 than according to model 2 (in area, as well as in depth and width). This can be 
explained physically in the following way. With one and the same initial gradient of the pulsed pressure  ~, ac- 
cording to model 2 the explosion energy is taken into account onljr for v_>v.> 0, while in model 3 all the energy 
is taken into account, s tar t ing with v_> 0. The explanation as to why according to model 1 the edge of the ex- 
cavation is located c loser  to the charge than according to model 2 is given in [5]. 

The author expresses thanks to T. V. Borisov for carrying out the numerical  calculations. 
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P L A N E  W A V E S  I N  N O N L I N E A R  V I S C O U S  

M E D I A  

G.  M. L y a k h o v  a n d  V. N.  O k h i t i n  

M U L T I C O M P O N E N T  

.UDC 624.131 +532.529 

Wave p r o c e s s e s  in mul t icomponent  media  (liquid and w a t e r - s a t u r a t e d  soi l  with bubbles of gas,  suspen-  
s ions,  etc.) have been studied in [1-20] and other  invest igat ions.  

In [1] it was  a s sumed  that the space  is f i l led with a number  of continuous media ,  each  of which c o r r e -  
sponds to a component  of the medium.  The investigation was concerned with in te rpenet ra t ing  motions of these  
media  (in the genera l  c a se  each  moves  with its own ve loc i ty  and p r e s s u r e ) .  In the model of [2] the mul t i -  
component  medium was r e g a r d e d  as a homogeneous continuous med ium with a c o m p r e s s i b i l i t y  equation taking 
account of the compress ib i l i t y  and the p r e s e n c e  of components  that we re  in an equi l ibr ium state .  In [3] the 
mul t icomponent  med ium was r e g a r d e d  as homogeneous,  and the compre s s ib i l i t y  of the gaseous component  was 
de te rmined  by t Iugoniot ' s  adiabat ic  curve.  The re f lec t ion  of a plane wave f r o m  a solid par t i t ion  for  var ious  
angles of incidence was invest igated in [4] on the bas i s  of [2], using e lec t ronic  compute r s .  The p rob l em of the 
propagat ion  of a wave produced by  the explosion of the spher ica l  charge  of a b las t  wave,  using the model  of [2] 
as  a ba s i s ,  was solved by means  of e lec t ronic  compute r s  in [5]. The authors  o f  [6] p roposed  a model  of a 
homogeneous med ium analogous to that of [2] and obtained solutions of p rob l ems  concerning the pa s sag e  of a 
wave  through a l ayer  of wa te r  with gas bubbles and the ref lec t ion  of the wave f r o m  a f ixed boundary.  The 
spec ia l  c h a r a c t e r i s t i c s  of the s t r u c t u r e  of waves  in wa te r  with gas bubbles  and the effect  of v i scos i ty  d i s s ipa -  
tion r e l a t ed  to the motion of the bubbles with r e s p e c t  to the liquid were  cons idered  in [7]. In, the model  of [8] 
the pulsat ion of the bubbles  was a s s u m e d  to confo rm to L a m b ' s  equation, i .e. ,  the lack of equi l ibr ium between 
the phases  was taken into considera t ion .  The ca se  of s t rong  shock waves ,  on the bas i s  of [8], was cons idered  
in [9]. In [10, 11] it was shown that  in a liquid with gas bubbles ,  for  specif ic  re la t ionsh ips  between the v iscos i ty ,  
the load, and the bubble rad ius ,  t h e r e  is f o rmed  a wave with an osc i l l a to r  s t ruc tu re .  In [12] the s t r u c t u r e  of a 
wave was invest igated on the ba s i s  of the model  of [13], with osci l la t ions taken into considera t ion.  Equations 
for  the mechanics  of a two-ve loc i ty  t w o - t e m p e r a t u r e  med ium with two p r e s s u r e s  w e r e  p roposed  in [14]. In [15], 
on the bas i s  of [14], the s t r u c t u r e  of a s t a t ionary  wave was invest igated with t h e r m a l  conductivi ty taken into ac -  
count. It was  shown that  the na tu re  of the pulsat ion depends substant ia l ly  on the heat  exchange between the 
phases .  It was noted that  the exper imen t s  of [11] should be  analyzed with the t ime-dependen t  change of s t r u c -  
tu re  taken into account. In the expe r imen t s  of [16] it was es tabl i shed that an inc rease  in the intensi ty of the 
wave leads to an i nc rea se  in the f requency  and ampli tude of the osci l la t ions  on the f ront ,  while an inc rease  in 
the bubble d i ame te r  leads to a d e c r e a s e  of the f requency  and an inc rease  of the ampli tude.  Weak waves  w e r e  
c o n s i d e r e d . . T h e  authors  of [17] obtained n u m e r i c a l  solutions making it poss ib le  to de te rmine  the ampli tude 
osc i l la t ions  on the wave f ront ,  the ve loc i ty  of propagat ion  of the wave,  and the t ime  r equ i r ed  for  es tabl ishing a 
s t a t iona ry  s t ruc tu re .  Waves i n  w a t e r - s a t u r a t e d  rocks  w e r e  cons idered  in [18]. The authors  of [18] obtained an 
equation desc r ib ing  weak longitudinal waves  with iner t ia l  re laxa t ion  taken into account.  The effect  of the tension 
su r f ace  was invest igated i n  [19]. In [20] the model  of [2] was improved  by  the introduction of nonl inear  d i ag rams  
for  the dynamic and s ta t ic  c o m p r e s s i o n  of the mul t icomponent  medium,  making it poss ib le  to introduce bulk 
v iscos i ty .  The effect  of v i scos i ty  was cons ide red  in a somewhat  different  manner  in [21]. 
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